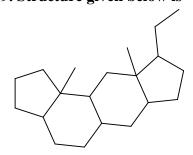
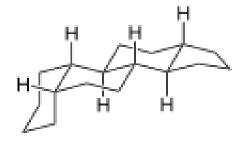
Question Bank


Sem-V

Organic Chemistry


1. In steroid nomenclature, the prefix "nor" means					
a) straight chain					
b) having an extra alcohol group					
c) having an extra methyl group					
d) missing an alcohol group					
e) missing a methyl group					
2. 5β-cholestane-3-one forms on bromination forms:					
a) 4-bromo derivative					
b) 2-bromo derivative					
c) 3-bromo derivative					
d) No reaction					
3. Cholesterol gives upon oxidation with H ₂ O ₂					
a) trans product					
b) cis product					
4. Cholesterol gives upon oxidation with KMnO4					
a) trans product					
b) cis product					
5. Acetates of 5α -cholestane- 3β -ol get hydrolysed than 5α -cholestane- 3α -ol					
a) very slowly					

b) same rate

- c) more rapidly
- 6. For esterification of steroid hydroxyl groups
- a) equatorial group is preferred
- b) axial group is preferred
- c) no particular preference
- 7. For oxidation of saturated steroids
- a) equatorial group is preferred
- b) axial group is preferred
- c) no particular preference
- 8. In bimolecular ionic elimination reactions of steroids
- a) cis diaxial groups are eliminated
- b) trans diaxial groups are eliminated
- c) equatorial, axial groups are eliminated
- d) trans diequatorial groups are eliminated
- 9. Structure given below is

- a) Pregnane
- b) androstane
- c) estrange
- d) A-nor-Pregnane
- 10. Structure given below is chair conformer of

- a) 5α-gonane
- b) 5β-gonane
- c) 5α-androstane
- d) 5β-estrane
- 11. Number of chiral centers present in the basic steroid ring is
- a) 4
- b)3
- c) 5
- d) 6
- 12. Ring present in a steroid is
- a) Cyclopentanoperhydrophenanthrene
- b) Cyclopentanoperhydronaphthalene
- c) cyclohexanoperhydrophenanthrene
- d) cyclohexanoperhydronaphthalene
- 13. Calculate the isoelectric point of histidine, which has pK1=1.77, pK2=6.10, pK3=9.18.
- a) 6.33
- b) 3.93
- c) 7.64
- d) 10.93
- **14.** Size exclusion chromatography of monodisperse fractions of a linear polymer A and B yield molecular weights of 1,00,000 and 3,00,000 respectively. A mixture is prepared from 2 parts by weight of A and 4 parts by weight of B. Determine weight average molecular weights.

a) 2,33,333					
b) 4,00,000					
c) 2,00,000					
d) 14,00,000					
15. During DNA synthesis,does not require to be protected					
a) Adenine					
b) Guanine					
c) Thymine					
d) Cytosine					
16. Example of non-biodegradable polymer is					
a) Polyethylene					
b) Cellulose					
c) Nylon					
d) polyhydroxybutyrate					
17. Isoelectric point is the pH at which net charge on molecule is					
a) Positive					
b) Negative					
c) Zero					
18. Following scheme is for synthesis of amino acid using					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					

b) Strecker synthesis

a) HVZ reaction

c) Reductive Amination of α-Keto Acids				
d) Amidomalonate synthesis				
19. For synthesis of Ala-Ser dipeptide first step is				
a) Protection of NH2 group of alanine				
b) Protection of COOH group of alanine				
c) Protection of NH2 group of Serine				
d) Protection of COOH group of Serine				
20. Carboxyl protectiong group is				
a) Boc				
b) Fmoc				
c) Methyl Ester				
d) Ether				
21. Amino group protecting group is				
a) Boc				
b) Benzyl ester				
c) Methyl Ester				
d) Ether				
22. To prepare a simple dipeptide using solution phase chemistry how many steps are required?				
a) 2				
b) 3				
c) 5				
d) 4				

23. Give the amino acid sequence of hexapeptides that produce the following sets of fragments on partial acid hydrolysis: Arg, Gly, Ile, Leu, Pro, Val gives Pro-Leu-Gly, Arg-Pro, Gly-Ile-Val a) Arg-Pro-Leu-Gly-Ile-Val b) Pro-Leu-Gly-Ile-Val-Arg c) Gly-Ile-Val-Arg-Pro-Leu d) Val-Arg-Pro-Leu-Arg-Gly						
24. Give the amino acid sequence of hexapeptides that produce the following sets of fragments on partial acid hydrolysis: N, L, M, W, V2 gives V-L, V-M-W, W-N-V a) W-N-V-M-W-V b) V-M-W-N-V-L c) V-L-M-W-N-V d) L-V-W-M-V-N						
25. Edman reagent is						
a) PITC						
b) PIC						
c) ATZ						
d) PTH						
26. 19- Nor steroidal nucleus is						
a) cholestane						
b) androstane						
c) estrane						
d) pregnane						
27. Cholesterol has hydroxyl group attached to carbon at its						
a) 3 rd Position						
b) 4 th Position						
c) 6 th Position						
d) 5 th Position						
28. Example of a non aromatic heterocycle is						
a) Pyridine						
b) Pyrimidine						

c) Cyclohexane					
d) Morpholine					
29. Oxirane reacts with ethylene diamine to form					
a) Piperazine					
b) Piperidine					
c) Morpholine					
d) Indoline					
30. Catalytic hydrogenation of pyridine gives					
a) Pyrazine					
b) Piperazine					
c) Piperidine					
d) Pyrimidine					
31. Carbohydrates are converted to Furan in conditions					
a) acidic					
b) basic					
c) neutral					
d) drastic					
32. Correct basicity order is					
a) Basicity order: Pyrazole > Imidazole > Pyridine > pyrrole					
b) Basicity order: Imidazole > Pyrazole > Pyridine > pyrrole					
c) Basicity order: Imidazole > Pyridine > Pyrazole > pyrrole					
d) Basicity order: Imidazole > pyrrole > Pyridine > Pyrazole					
33. In Paal-Knorr method of synthesis of Furan, starting material is					
a) 1,2 diketone					
b) alpha, beta diketone					
c) 1,4 diketone					
d) 2-mino-1,4-diketone					

34. Furan is converted to pyrrole by using
a) NH3
b) R2NH
c) NaNH2
d) Pyridine
35. α Haloketone reacts with Benzimidine to yield
a) 2,3 substituted imidazole
b) 2,4 substituted imidazole
c) 2 substituted imidazole
d) 4 substituted imidazole
36. 4-methylimidazole and are equivalent structures.
 a) 4-methylimidazole b) 3-methylimidazole c) 5-methylimidazole d) 4-methylimidazole
37. In The Knorr Synthesis of Pyrrole, condensation of with another dicarbonyl compound with active methylene group in presence of acetic acid
 a) Alfa amido ketone b) beta amino ketone c) Alfa amino ketone d) Alfa amino ester
38. Hydrogen bonding exists in
 a) Thiophene b) Imidazole c) Furan d) Pyridine
39. Five membered heterocycles undergo electrophilic substitutions involving electrophilic attack at the of high electron density.
 a) α positions b) β positions c) α and β positions d) δ positions
40. In sulfonation of Pyrrole, mild sulfonating agent is used

		Pyridine sulfur trioxide complex
	,	sulfur trioxide
	,	Pyridine sulfuravida complex
	a)	Pyridine sulfuroxide complex
41.	Th	iophene reacts with to give 2- bromothiophene
	a)	N-Bromosuccinimide
	b)	Tribromosuccinimide
	c)	Br2 in CCl4
	d)	Br2, HBr
		involves the cyclizative condensation of α-halo ketones with thioamides
in t	he s	synthesis of Thiazoles
	a)	Gabriel Synthesis
		Hantzsch's Synthesis
		Cook- Heilborn's Synthesis
		Edmund synthesis
	/	
		niazole ring is relatively resistant to oxidation, but the thiazoles substituted with ing groups are oxidized to their N-oxides by
	a)	Only KMnO4
	,	hydrogen peroxide and peracetic acid
		KMnO4, hydrogen peroxide and peracetic acid
		KMnO4 and peracetic acid
44.	In	the resonance structure of oxazole, is negatively charged
	a)	Oxygen
		Nitrogen
	c)	Carbocyclic ring
	d)	Nitrogen and ring
45.	Nit	tration & sulfonation is because of pyridine type nitrogen of oxazole
	a)	Difficult
	b)	Easy
	c)	Impossible
	d)	Common
46.	In	the structure of imidazole, electrophilic substitution is favoured at
	a)	1 st and 3 rd position
		2 nd and 3 rd position
		4 th and 5 th position
		2 nd and 5 th position

47. Zinc in acetic acid reduces pyrrole to yield

	b)	Pyrrolidine
	c)	2,3 dihydropyrrole
		2,5 dihydropyrrole
	/)
48	Ox	ygen in Furan is
10.	OA,	ygon in i didii is
	a)	Not hybridized
		sp hybridized
		sp2 Hybridized
		= · ·
	u)	sp3 Hybridized
40	C111	nhur in Thiophone is
1 9.	Sui	phur in Thiophene is
	a)	Not hybridized
		sp hybridized
		* •
		sp2 Hybridized
	d)	sp3 Hybridized
50	NT!4	
50.	MIU	rogen in pyrrole is
	(۵	Not by bridized
		Not hybridized
		sp hybridized
		sp2 Hybridized
	d)	sp3 Hybridized
51.	In I	Mannich reaction, ion is formed to react with Indole
		iminium
	b)	ammonium
	c)	cyanonium
	d)	ammino
52.	Pyr	imidine is
	•	
	a)	strong base
		weak base
		neutral heterocycle
		very weakly acidic
	u)	very weaking defende
53	In	synthesis of indole, o-toluidine is used as starting material
55.	111 _	synthesis of indoic, o-tolulance is used as starting material
	a)	Bischler-Möhlau
	,	Medlung
		Wolf-Kishner
	,	
	a)	Paal Knorr

a) 2,4 dihydropyrrole